家庭用調理器による鍋湯沸し実験を対象とした高精度 CFD 解析手法の検討

2009MBB027 吉村 崇弘

白石研究室

The purpose of this study is to verify the flexibility of the CFD analysis technique for the pan kettle experiment in the case of using household cooking heater. The characteristics of analysis technique are ①Steam generation, ② Compressibility of gases and 3Gas radiation. The following results were obtained. 1) In the case of IH cooking heater, the thermal plume became diffusive by considering steam generation. However, the prediction accuracy did not improve in consideration of compressibility either. These results were confirmed with all cases which changed the heat generation and the shape of the pan. 2) In the case of Gas cooking heater, the air temperature from a nozzle became low and the surface temperature of the wall became high by considering the gas radiation.

CFD 解析,家庭用調理器, 圧縮性解析,水蒸気発生,ガス放射, 湯沸し実験

1.序論

厨房空間は IH・ガス調理器を問わず、一般に水蒸気、 オイルミスト等の汚染物質や熱の発生により、建築空間の 中でも特に、複雑な温熱・空気環境が形成されやすい。そ のため、レンジフードによる確実な捕集・排気が行われな い場合、同空間の環境の悪化や空調エネルギー消費量の増 加などの問題も懸念される。このため厨房空間におけるレ ンジフードの捕集率やその評価に関する研究が以前より行 われており、特に近年では CFD (Computational Fluid Dynamics)解析による検討も数多く試みられている。そ の一例として、家庭用調理器による湯沸し実験を対象とし た事例では、①鍋上面での水蒸気発生、②温度や湿度変化 に伴った圧縮性(圧縮性乱流モデルも含む)、③ガス放射を 考慮した手法による解析が行われ、予測精度の向上が確認 されている。しかし、検証事例が不十分であり、解析手法 の汎用性が確認されるに至っていない。そこで本研究では、 家庭用調理器(IH 及びガス)を対象とし、上記の解析手 法をベースに、発熱量及び鍋形状を変化させた解析を行い、 実験との比較により調理器直上の流れ場及び温度場の予測 精度を検証し、同解析手法の汎用性を確認することを目的 としている。

2.実験概要(図1、図2、表1、表2)

CFD 解析の比較・検証用の基礎データ作成のため、中間 期である 2009 年 6 月 (IH 調理器対象) 及び 2010 年 10 月(ガス調理器(都市ガス及び LP ガス)対象)に、北九 州市立大学S棟の厨房実験室にて、実験室の北西に設置さ れた調理器で鍋湯沸かし実験を行った。実験は水分発生量 測定実験と鍋直上の温熱空気環境測定実験の2種類を行っ た。水分発生量測定実験では沸騰開始直後及び沸騰 10 分 後に測定する。水の質量差を要した時間で除すことにより、 沸騰中の単位時間当たりの発生水分量を算出する。また同 時に、加熱に要する消費電力量(またはガス消費量)も測

衣 I 側止頃日及い側止機器(*は III 調理器のみ側」

測定項目		測定機器	型番(メーカー)	
調理器	風速	定温型 熱式風速計	MODEL6162 (日本カノマックス)	
<u> </u> 直上	温度	熱電対	T型熱電対	
鍋側面 温度	温度	熱電対	T型熱電対	
厨房 空間	上下温度*	小型無線 温湿度計	ThermoRecorder (T&D)	
	放射*	4成分 放射収支計	CNRI (Kipp&Zonen)	
	熱画像	サーモカメラ	CPA2200(チノー)	
	質量	電子天秤	GX-6000 (A&D)	
発生 水分量	消費電力量	電力量計	クランプオン パワーハイテスタ 3168 (HIOKI)	
	ガス消費量	ガス流量計	DC-5A(シナガワ)	

表2 実	験条件			N (H:1.5kW) #73 : 1 61kW
ケース	火力 (IH/ガス)	鍋サイズ	換気量	
実験A	2.5kW/2.45kW	φ 23cm		ガス:2.45kW ガス:4.2kW
実験B	3.0 kW/4.2 kW	高さ8cm	335m ³ /h	
実験C	2.5kW/2.45kW	φ20cm 高さ10cm	00000 / 11	※調理器、ケースによって使用する 調理器の口の位置が異なる。

定し、投入熱量の算出に用いる。測定は各2回ずつ行いそ の平均値を使用する。鍋直上の温熱空気環境測定実験では、 沸騰から 20 分後に鍋直上 50 点(25 点×2 面)の風速及び温 度分布を測定した。測定の際、鍋の水位が常に鍋の4分目

High Accuracy CFD Analysis Technique for the Pan Kettle Experiment in the Case of Using Household Cooking Heater YOSHIMURA Takahiro から 8 分目程度になるように^{注1)} 熱湯を注入して調節して いる。各実験共に発熱量及び鍋の形状を変えた計9ケース (3 調理器×3条件) で行った。

3.解析概要

3.1.解析ケース設定(図3、図4、表3、表4)

3.51m×6.79m×2.8mの前述の同厨房実験室を対象と する。実験と同様に、鍋湯沸し実験の沸騰状態を想定し、 定常解析を行った。IH 調理器を対象とした解析では、① 鍋上面での水蒸気発生の考慮、②圧縮性の考慮の2つを組 み合わせた計4ケースを対象として比較検討を行った。ま た、ガス調理器を対象とした解析では、①、②に加え、③ ガス放射を考慮し、3つを組み合わせた計8ケースで解析 を行った^{達2}。なおケースは実験計画法により選出している。 本研究ではCFD 解析による対流熱伝達量の評価に加え、 固体内の熱伝導、固体表面間の放射熱伝達を連成して解析 を行っている。また、圧縮性解析の場合は乾燥空気と水蒸 気の質量分率の輸送方程式も連成して解析を行っている。

3.2.湯面からの水蒸気発生量注3)

沸騰開始直後及び沸騰 10 分後に測定した水の質量差を 要した時間で除すことにより、沸騰中の単位時間当たりの 発生水分量を算出し、状態方程式を用いて流量を求め、境 界条件として水面に与えている。吹出し温度は100℃とし、 水蒸気の質量分率を1.0[-]とした(非圧縮性解析の場合は、 水蒸気ではなく100℃の空気が水面から吹出していると仮 定して解析を行う)。

3.3.ガス調理器解析のノズル部の詳細

従来の解析手法では IH 調理器の解析の様に鍋底に発熱 量を与えていたが、本研究では火炎の吹出ノズルを再現し、 ノズルロから高温空気が吹出すモデルを組み込んでいる。 この場合、高温空気の①吹出流量、②成分、③吹出温度が 必要になる。以下にその算出方法の詳細を示す。

1)高温空気の吹出流量・成分 本研究で使用している都市 ガスはCH4を主成分としており、空気との燃焼反応は式(1) のように示すことができる。燃焼した CH4の 10.52 倍(モ ル比率)のガスがノズルより吹出している。そのため実験 により得られた都市ガスの消費量を 10.52 倍した値を吹出 流量として規定している。また、この反応式に基づき CO₂、 H₂O、不燃ガス^{注4)}の質量分率を算出している。LP ガスで も同様の計算手法で算出した。

CH₄ + 空気 = CO₂ + 2H₂O + 不燃ガス (1) 2)高温空気の温度 実験から得たガス消費量より算出し た熱量(全熱)から発生水分量より算出した熱量(潜熱)を引 いた値をノズルより吹出す熱量(顕熱)とし、式(2)に基づき 高温空気の温度を算出した。この際使用する比熱及び密度 は、吹出す空気の成分 (CO₂, H₂O, 不燃ガス(N₂))のモ ル比率に合わせて算出したものを使用した。

q=C_p·ρ·Q(T_{in}-T_{out}) (2) 3)ガス放射(WSGG モデル) 本来、空気は透明体とみなせ るが、ガス調理器使用時は燃焼反応が起きるため CO₂ や H₂O が多量に発生し、放射による熱伝達性状が変化する。

図4 鍋の解析モデルの概要

表3 解析ケースの概要(IH調理器)

ケース		case1	case2	case3	case4		
非国	E縮	0		0			
圧	縮		0		0		
鍋上 水蒸拿	面の 気発生	_	実験A:1.67 実験B:2.00 実験C:1.62 100℃(case3 , case4:質量		7×10 ⁻³ m ³ /s 8×10 ⁻³ m ³ /s 2×10 ⁻³ m ³ /s 3:ただし空気 5)率1.0[-])		
乱流-	モデル	標準k- ε	標準k-ε (圧縮性)	標準k-ε	標準k-ε (圧縮性)		
解析	領域		3.51 m imes 6.79	Əm×2.8m(高さ)		
メッミ	ンュ数	実験A:1054205=103×115×89 実験B:1136340=107×118×90 実験C:1139880=105×118×92					
移行	充項	一次精度風上スキーム					
速度		鍋表面は二層モデルを採用 その他の壁面は一般化対数則					
条件	温度	鍋表面は二月 その他壁面の	層モデルを採 の対流熱伝達	用 率α _c =4.6W/	m ² •K		
Q _{in} =0.093m ³ /s(換気量335m ³ /h相当)、T 流入条件 k _{in} =1.1×10 ⁻⁴ m ³ /s ² 、ε _{in} =2.5×10 ⁻⁶ m 解析の場合は基準圧力101,325[Pa],混 分率[-](乾燥空気:0.0945,水蒸気:0.00					Y _{in} =25.5℃ f/s ³ 、圧縮性 合空気の質量 055)を設定		
流出条件		圧力0[Pa],その他全てFree slip 圧縮性解析の場合は基準圧力101,325[Pa]を設定					
発熱 条件 ³⁴ 底 ^{注5)}		実験A:437.8W 実験A:424.6W 実験B:483.0W 実験B:468.9W 実験C:424.2W 実験C:413.6W			424.6W 468.9W 413.6W		
	照明		180W(30	JW×6ヵ所)			

そこで本研究ではガス放射を考慮した解析を行っている。 燃焼ガスの主要構成要素である、CO2 やH2O は、ある特 定の波長帯において熱エネルギーの吸収や放射を行う。本 来、実在ガスにおいてこの吸収率や射出率は離散的なスペ クトルを持つので取り扱いが難しい。そこで WSGG モデ ルを使い、近似的に灰色ガスとして取り扱えるように、離 散的な吸収曲線を3種類の吸収係数を持つ灰色吸収バンド に置き換える。以下に算出式を示す。本解析では計算の簡 易化のため、20サイクル毎に吸収係数の算出を行っており、 それ以外は前回に算出した結果を代用している。

$$\kappa_{i} = \sum_{n=1}^{\infty} a_{n}(T_{i})k_{n}(P_{CO2} + P_{H2O})$$
(3)

$$a_{n}(T_{i}) = b_{1,n} + b_{2,n}T_{i}$$
(4)

κ:吸収係数[·] P_x: X の分圧[Pa] b, k: モデル定数[·]
 4.実験結果と CFD 解析結果との比較

各図は代表ケースとして実験Aの結果を示している。 4.1.H 調理器の結果(図 5、図 7、表 5)

1)鍋直上の流れ場 case1 では従来の解析と同様に速度勾 配が急な分布となり、拡散半径の小さい熱上昇流が鍋直上 中央に形成されている(RMSE=0.15m/s)。case2 は、形 状には case1 と大きな違いは見られず、非拡散的な熱上昇 流となったが、case1 よりも Y 軸正方向にずれる傾向が見 られた(RMSE=0.14m/s)。case3、case4 では、風速ピー ク値も実験値と同程度になり、全体的な分布も実験と対応 する結果が得られ、拡散的な形状となった(RMSE // case3:0.06m/s, case4:0.08m/s)。

2) 鍋直上の温度場 case1 では風速と同様、ほかのケース よりも非拡散的な結果となり、特に鍋上 150mm でこの傾 向が顕著に現れた(鍋上 150mm の RMSE=6.97℃)。case2 も case1 と同様な結果となり、大きな差異はなかった

(RMSE=5.07℃)。case3、case4 は風速と同様、他の 2 ケースよりも拡散的になっており、得に鍋上 150mm では 両ケースともに高温域が広く形成され、実験値に近づいた (RMSE // case3 : 2.38℃, case4 : 2.46℃)。

42.ガス調理器の結果(図6,図8,表6%ただし都市ガスのみ) 1)鍋直上の流れ場 case1 は、高速で非拡散的な熱上昇流 が Y 軸正方向に少しずれて形成される結果となった。風速 のピーク値も殆どのケースで最も高い結果となり、実験値 と大きく異なった。case2 は、鍋底に熱量を与えている case1 とは異なり、ノズルから吹出すモデルである。case1 と同様に非拡散的な熱上昇流で大きな差異はなかったが、

case1よりも鍋中心に近い位置で形成された。IH 調理器と 同様に、水蒸気発生を考慮したケースでは比較的に拡散的 な熱上昇流となり、予測精度の向上が見られた(RMSE // case1:0.17m/s, case3:0.11m/s)。圧縮性解析は、吹出 し温度が非圧縮性解析よりも数百度低くなり、鍋の温度が 全体的に低くなった。ガス放射の考慮による流れ場の差異 は殆ど見られなかった。

2) 鍋直上の温度場 case1 は風速と同様に、非拡散的な温 度分布なった。case2 も非拡散的な温度分布で case1 と大 きな差異は見られなかったが、調理器近傍の壁面の温度が case1 ほど上昇せず、実現象に近づいた。これはノズルか らの吹出すことで周辺の空気に伝熱したため、鍋底の温度

表4 解析ケースの概要(ガス調理器)

ケ	ース	case1	case2	case3	case4	case5	case6	case7	case8	
非	圧縮	0	0	0 0						
Ŀ	E縮					0	0	0	0	
鍋」 水蒸	鍋上面の 水蒸気発生			[都市 実験A:9.24: 実験B:1.30 実験C:9.09 [LP] 実験A:8.9- 実験B:1.22 実験B:1.22 実験C:9.0 100℃,(た	ガス] ×10 ⁻⁴ m ³ /s 6×10 ⁻³ m ³ /s 9×10 ⁻⁴ m ³ /s ガス] 4×10 ⁻⁴ m ³ /s 9×10 ⁻³ m ³ /s 1×10 ⁻⁴ m ³ /s だし、空気)			[都市 実験A:9.24] 実験B:1.3 実験C:9.09 10 質量分 ²	ガス] ×10 ⁻⁴ m ³ /s 6×10 ⁻³ m ³ /s 9×10 ⁻⁴ m ³ /s 0℃ 率1.0[-]	
ガン	ス放射		0		0		0		0	
乱流	モデル		根	標準k-ε			標準k-	-ε(圧縮性)	
解植	斤領域			3. 51	m $ imes$ 6. 79m $ imes$	〔2.8m(清	禹さ)			
メッ	シュ数			実験A 実験B 実験C	: 1099406= : 1081234= : 1131928=	121×1 107×1 105×1	18×77 18×77 16×82			
移	流項				一次精	度風上	-			
D\$ 7	速度	一般化対数則								
壁面 条件	温度									
流	人条件	(H2O:	Q _{in} =0. k _{in} = 圧着 0.0097	093m ³ /s(4 4.93×10 縮性解析の 混合型 705,C02:0	換気量335 ⁻⁴ ㎡/s ² 、 O場合は基 E気の質量 . 000456, !	m ³ /h相 ε _{in} =1 準圧プ 公率[公率[V2+etc	当)、T . 41×1 J101, 3 -]を設 :0. 747	Y _{in} =25.5° 10 ^{−6} m²/s ³ 、 25[Pa]、 定 '398,02:0	C、 . 242441)	
圧力0[Pa],その他全てFree slip 流出条件 圧縮性解析の場合は基準圧力101,325[Pa]を設定						定				
ノズ 発熱 条件 出し		実験A 実実実 実 実 実 験 験 の A と の の の の の の の の の の の の の の の の の	: 1469. 8 : 2811. : 1471. : 1342. : 1527. : 1338.	[都市ガ C (1892. 9W) 4℃ (2080. 7℃ (1905. [LPガ] 1℃ (1615. 9℃ (1801. 9℃ (1612.	ス] , 6. 16×10 3W), 1. 05> 9W), 6. 12> ス] 2W), 6. 16> 0W), 1. 05> 1W), 6. 12>	$^{-4}m^3$ $< 10^{-3}m^3$ $< 10^{-4}m^3$ $< 10^{-4}m^3$ $< 10^{-3}m^3$ $< 10^{-3}m^3$ $< 10^{-4}m^3$	都i /s (H20 /s L1 /s L1 /s (H20 N2+ /s /s	市ガスの質量 (0, 1455, 002) (0, 1455, 002) (0, 1750, 002) (0, 1790, 002) (0, 1199, 002) (0, 1199, 002) (0, 1199, 002) (0, 1190, 002)	☆☆率[-] 0.1779, 12:0.0) 分率[-] 0.2198, 12:0.0) ×0.1) ² ^{3/2})/1 _{in} →風速	
	照明	1			180W(30W	×6ヵF	歽)			

表5 RMSE (III 調理器) ※数字の横の*は最小値を示している

		case1	case2	case3	case4
風速 [m/s]	実験A	0.15	0.14	0.06*	0.08
	実験B	0.18	0.18	0.08*	0.10
	実験C	0.14	0.12	0.06*	0.08
温度 [℃]	実験A	5.44	5.07	2. 38*	2.46
	実験B	4.68	6.40	3.87	3. 63 [*]
	実験C	4.31	4.28	2. 66*	2.81

表6 RMSE(都市ガス)※数字の横の*は最小値。※LP ガスは省略

		case1	case2	case3	case4
風速 [m/s]	実験A	0.17	0.20	0.11*	0.17
	実験B	0.34	0.32	0.26*	0.27
	実験C	0.23	0.22	0.22	0. 20*
温度 [℃]	実験A	7. 51 [*]	9.92	7.59	7.82
	実験B	13.35	12.71	11.12	10. 82*
	実験C	6. 53 [*]	11.02	9.97	10.19

が case1 に比べて低くなり、結果的に放射の影響が小さく なったためと考えられる。流れ場と同様に、水蒸気発生を 考慮したケースは温度分布も拡散的な分布となり、特に鍋 上 650mm で顕著に見られた。ガス放射の考慮の有無で温 度分布に大きな差異は見られなかったが、ガス放射を考慮 することでノズル部からの吹出し温度は低下し、周辺の壁 面温度は上昇する傾向が見られた(図9参照)。

4.3.予測精度の差異に関する考察

1) H調理器 風速及び温度共に、case3、case4 が従来の解

析手法である case1 と比較すると予測精度が十分に改善さ れたといえる。この様な差異が生じた理由としては、水面 からの水蒸気発生の考慮が最も大きいと推察される。高温 水蒸気の発生を考慮することにより、鍋直上の温度場の予 測精度が向上し、結果として流れ場の予測精度が向上して いる。一方、圧縮性の効果は本解析では殆ど見られなかっ た。計算時間や安定性の観点からは、流れ場及び温度場の みの解析であれば case3 が最も効率的である。しかし、湯 面からは水蒸気ではなく高温空気が吹出しており、実際に は潜熱ではなく顕熱を発生させていることになり実現象と 矛盾する。このため、レンジフードの顕熱の捕集率の推定 等で困難となる。ゆえに総合的に勘案すると case4 の解析 手法が最も望ましいと考えられる。

2) ガス調理器 ノズル部の再現及び水蒸気発生の考慮によ り予測精度は大きく改善されたといえる。一方、本解析で は圧縮性を考慮することで、収束解が得られにくくなった。 圧縮性解析では一般に高温低マッハな流れ場では収束解を 得ることが困難となるため、非圧縮性解析による予測精度 の向上が必要である。またガス放射の考慮により温度場に 影響を与えるほどの明確な効果は見られなかったが、ノズ ル吹出し温度の低下等は確認できた。圧縮性及びガス放射 の考慮に関しては今後更なる検討が必要である。

5.まとめ

本研究では家庭用調理器による鍋湯沸し実験を対象とし、 ①水蒸気発生、②圧縮性、③ガス放射を考慮した解析を行い、その効果を確認すると共に、その手法の汎用性について検討した。以下に得られた知見を示す。

1) 水蒸気発生を考慮することで流れ場及び温度場共に拡 散的な分布となり、実現象に近づいた。

2) IH 調理器の解析では、風速・温度分布においては圧縮 性の効果は殆ど見られなかった。ガス調理器の解析では、 考慮することで収束解が得られにくくなった。

3) ガス放射を考慮することで、ノズル吹出し温度が低下 し、周囲の壁面温度が上昇したが、いずれも明確な差が出 ず、予測精度の向上には至らなかった。

【注釈】

水位が4~8分目ならば水蒸気発生量の影響が殆どない。(文献1)

2)時間の都合上LPガスでは圧縮性の考慮はせず、4ケースで解析した。

3) 水蒸気発生の乱流エネルギーは文献2の図8~9を参考に算出した。

4) 不燃ガスの主成分は N2のため分子量を 28 とした。

5) 鍋上面から水蒸気の発生を考慮して解析を行った場合、水面(100℃)からの放射熱伝達も再現している。このため、case3及び case4 では水面からの放射熱伝達量(10.6~14.1W程度)を事前解析により算出し、鍋底の発熱条件(表3の顕熱量)からそれらを差し引いて解析を行っている。

【参考文献】

 1) 于穎,楢崎正也,佐藤隆二,山中俊夫:ガスレンジによる調理時の熱上昇気 流のモデル化,住宅厨房におけるレンジフードの捕集効率の予測法に関する 研究 その1,日本建築学会計画計論文報告集,第434号,pp.25-34,1992.4.
 2) 百瀬敏成,山中俊夫,甲谷寿史,山本晃裕:業務用レンジから発生する上昇 気流の性状把握およびモデル化,日本建築学会環境系論文集,第567

case1-風速
 case4-風速
 case1-温度
 case4-温度
 る
 の水平分布(IH/実験A)

1) ガス放射なし 2) ガス放射なし 2) ガス放射めり 図9 壁面温度及びノズル吹出温度

号, pp. 49-56, 2003. 5.

 3) 近藤靖史, 荻田俊輔: CFD 解析による局所換気装置の直接捕集率(DCE)の 算定, 日本建築学会環境系論文集, 584 号, pp. 41-46, 2004. 10.